
Respiratory with Naomi and Savannah

The plan

The basics of respiratory conditions

Investigations

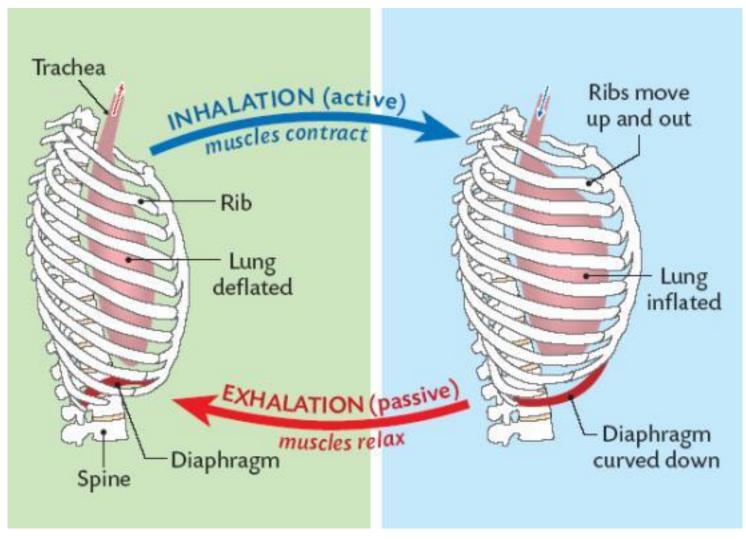
History

Examination

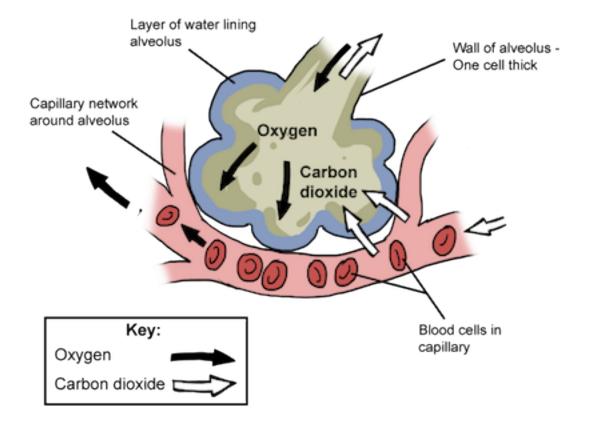
Peak flow

ABC

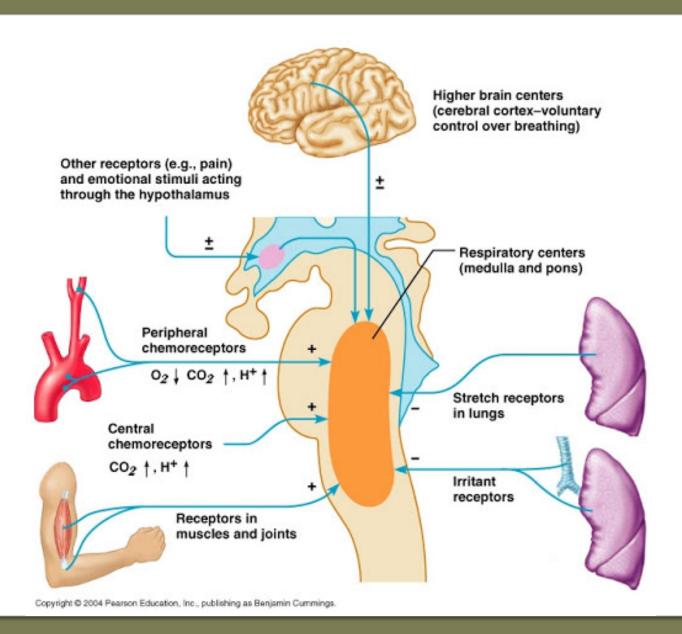
CXR

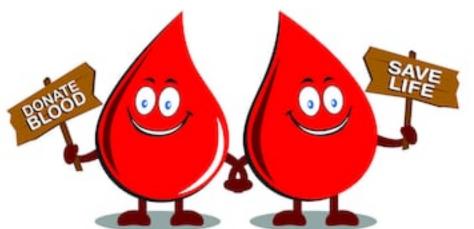

Key conditions to know!

Suggested take home/approach


- Use as guide
- Take what you want from it
- Find your style of learning

Give a man a fish and you feed him for a day. Teach a man to fish and you feed him for a lifetime. -Chinese Proverb




https://anjungsainssmkss.wordpress.com/2011/05/02/inhalation-and-exhalation/

https://pmgbiology.com/2015/10/19/alveoli-and-gas-exchange-a-understanding-for-igcse-biology/

Other bits to think of ...

shutterstock.com • 713873935

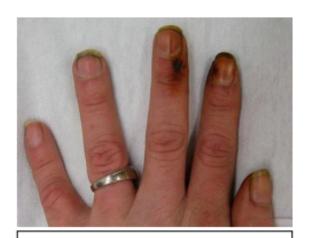
shutterstock.com • 1059090311

A patient presenting with a respiratory problem...

Find how your brain processes things... mine

Step 1: what is their presenting complaint

Step 2: who are they → can point to what is going on


Step 3: what do

they look like

Examination findings

Peripheral cyanosis

Tar staining

Nail clubbing

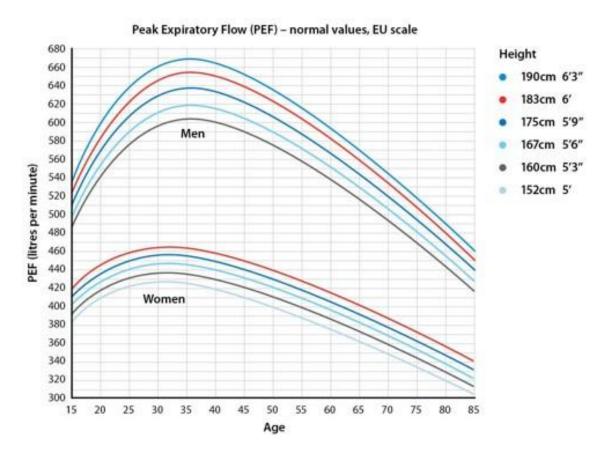
Horner's syndrome: ptosis, miosis, anhidrosis
Nactival A, Singh S, DiSalle M, O'Sallbun J (2005) Paintal Horner Syndrome as a Harbinger of Silect
Carotid Dissocion. Flat Med 2016: e129 6e120.3771/poenal.gmed.0020029

Pectus excavatum: sunken chest. May be congenital or develop at puberty

Pectus carinatum: protrusion of sternum. May be congenital, post-surgical or develop at puberty

Peak Expiratory Flow Rate

- Measures how fast you can breathe out after you've taken a full breath in
- Measured with peak flow meter in L/min


How to use:

- Deep breathe in
- Tight seal
- Short, fast blow
- Best of 3

How To Interpret PEFR

- Predicted values are dependent on sex, age, height and ethnicity
- Asthma and COPD
 - Spirometry
 - Reversibility testing

Respiratory failure

- Type 1 = 1 problem (hypoxaemia Pao2 < 8kPa)
- Type 2 = 2 problems (hypoxaemia AND hypercapnia PaCO2 >6kPa)

Type 1 → V/Q mismatch – the ventilation does not match perfusion
Air in not matched with blood flow
2 possible causes... an air problem (bronchoconstriction) OR a perfusion problem (PE)

Type 2 → Hypoventilation

Breathing is not good overall...

Can be due to obstruction, restriction, neuromuscular, central

Type 1 Pulmonary		Type 2 Extrapulmonary	
Disorder	Disease (Ex.)	Disorder	Disease (Ex.)
Alveolar hypoventilation	Pneumonia ARDS Pulmonary edema	Central	Coma Intracerebral hemorrhage
Distribution / diffusion	Pulmonary fibrosis	Neuromuscular	Muscular dystrophy
Perfusion	Pulmonary embolism	Obstruction	COPD Asthma
		Restriction	Pulmonary fibrosis Pneumothorax
		o e 3 d disorder	

Table 2: Types of respiratory insufficiency, modified from [1]

Interpreting ABGs

- Look at the pH
- Look at the CO2
- Is it a respiratory problem? I.e. is something wrong with the CO2 and does this match what is happening with the pH
- Or is the CO2 normal/not matching the pH
- Look at the HCO3-
- Is there compensation

Its not always this simple... check out Geekymedics for more information

	рН	CO ₂	HCO3-
Respiratory acidosis	4	↑	Normal
Respiratory alkalosis	↑	+	Normal
Respiratory acidosis with metabolic compensation	↓ / ↔	↑	↑
Respiratory alkalosis with metabolic compensation	↑ / ↔	+	+

	рН	HCO ₃ -	CO ₂
Metabolic acidosis	+	→	Normal
Metabolic alkalosis	↑	↑	Normal
Metabolic acidosis with respiratory compensation	+	4	4
Metabolic alkalosis with respiratory compensation	↑	↑	↑

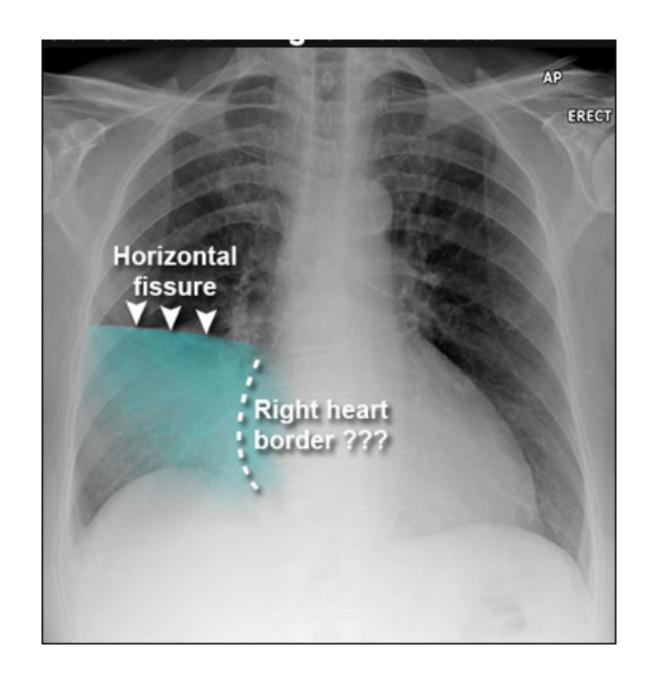
Example ABG ninja question... Whats going on here?

Value	Normals
7.30	7.35-7.45
29 mmHg	35-45 mmHg
14 mEq/L	22-26 mEq/L
	7.30 29 mmHg

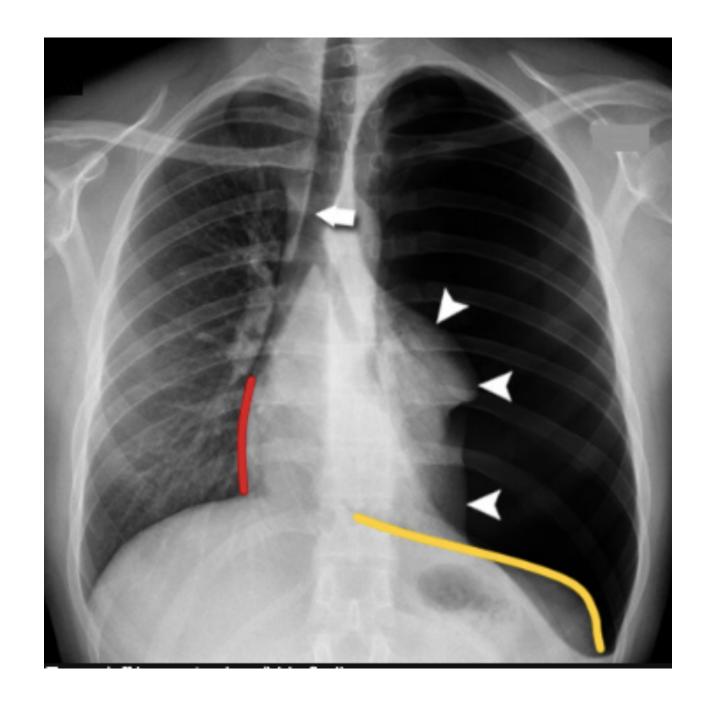
Test	Value	Normals	Analysis
рН:	7.30	7.35-7.45	Acidotic (low): Overall state is (still) an acidosis
PaCO ₂ :	29 mmHg	35-45 mmHg	Alkalotic (low): CO ₂ tension is low (respiratory alkalosis)
[HCO ₃ -]:	14 mEq/L	22-26 mEq/L	Acidotic (low): HCO3 ⁻ concentration is low (metabolic acidosis)

How To Interpret A CXR

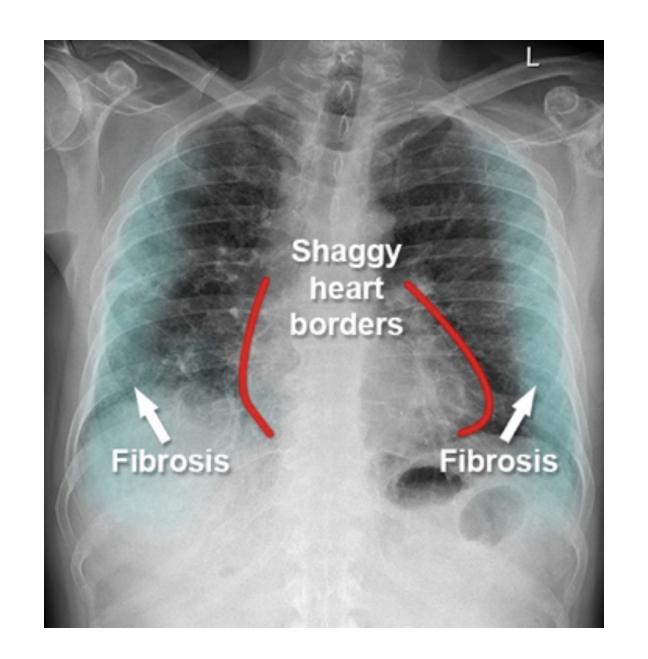
- Confirm details
 - Patient identifiers
 - Date and time of film
 - Previous imaging for comparison
- Assess the image quality RIPE
 - Rotation
 - Inspiration
 - **P**rojection
 - Exposure


ABCDE approach

- Airway
 - Tracheal deviation
 - Carina and bronchi
 - Hilar structures
- Breathing
 - Lungs and pleura
- Cardiac
 - Size and borders
- Diaphragm
 - Costophrenic angles
- Everything else
 - Bones, soft tissues, tubes, valves etc



shutterstock.com • 2763249



Why is all of this important

	Respiratory System	
1	Asthma	1*
2	Chronic Obstructive Pulmonary Disease (COPD)	1*
3	Respiratory Failure	1*
4	Pulmonary Embolus (PE)	1*
5	Pneumothorax	1*
7	Pneumonia	1
8	Deep Venous Thrombosis (DVT)	1
9	Carcinoma of the Bronchus	2
10	Pulmonary Tuberculosis (TB)	2
12	Bronchiectasis and Cystic Fibrosis (CF)	3
14	Interstitial Lung Disease	3
	Cardiovaccular Svetem	

Asthma and COPD

- Know the differences
- Spirometry
- Reversibility testing
- Management*
- Presentation

ASTHMA

- More intermittent airflow obstruction
- Improvement in airways obstruction with bronchodilators and steroids
- Cellular inflammation with eosinophils, mast cells, Tlymphocytes, and neutrophils in more severe disease
- Broad inflammatory mediator response
- Airways remodeling

COPD

- Progressively worsening airflow obstruction
- Often presents in 6th decade of life or later in patients
- More permanent airflow obstruction; less reversibility and less normalization of airflow obstruction
- Cellular inflammation: neutrophils, macrophages, eosinophils and mast cells may occur
- Emphysema frequently found

Why is all of this important

	Respiratory System	
1	Asthma	1*
2	Chronic Obstructive Pulmonary Disease (COPD)	1*
3	Respiratory Failure	1*
4	Pulmonary Embolus (PE)	1*
5	Pneumothorax	1*
7	Pneumonia	1
8	Deep Venous Thrombosis (DVT)	1
9	Carcinoma of the Bronchus	2
10	Pulmonary Tuberculosis (TB)	2
12	Bronchiectasis and Cystic Fibrosis (CF)	3
14	Interstitial Lung Disease	3
	Cardiovaccular Svetam	

Resp failure:

- ABGs
- Know what are common causes of each

Type 1 Pulmonary		Type 2 Extrapulmonary	
Disorder	Disease (Ex.)	Disorder	Disease (Ex.)
Alveolar hypoventilation	Pneumonia ARDS Pulmonary edema	Central	Coma Intracerebral hemorrhage
Distribution / diffusion	Pulmonary fibrosis	Neuromuscular	Muscular dystrophy
Perfusion	Pulmonary embolism	Obstruction	COPD Asthma
		Restriction	Pulmonary fibrosis Pneumothorax
		o e 3 d disorder	

Table 2: Types of respiratory insufficiency, modified from [1]

Why is all of this important

	Respiratory System	
1	Asthma	1*
2	Chronic Obstructive Pulmonary Disease (COPD)	1*
3	Respiratory Failure	1*
4	Pulmonary Embolus (PE)	1*
5	Pneumothorax	1*
7	Pneumonia	1
8	Deep Venous Thrombosis (DVT)	1
9	Carcinoma of the Bronchus	2
10	Pulmonary Tuberculosis (TB)	2
12	Bronchiectasis and Cystic Fibrosis (CF)	3
14	Interstitial Lung Disease	3
	Cardiovaccular System	

Pneumothorax, COPD, Lung cancer, TB, Pneumonia, ILD

CXR interpretation!!!

Resources for you to check out

- Zero to finals
- Almost a doctor
- Medicine in a minute**
- OSCE stop
- Easy auscultation
- Osmosis *
- https://oscestop.com/Respiratory%20condition%20signs.pdf
- https://www.easyauscultation.com/lung-sounds
- https://almostadoctor.co.uk/shortness-of-breath
- Very cheeky but... Student Q and Study Hub (+all our incredible collaborators)